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Global Existence in L ~ for the Enskog Equation 
and Convergence of the Solutions to Solutions 
of the Boltzmann Equation 
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For the Enskog equation in a box an existence theorem is proved for initial data 
with finite mass, energy, and entropy. Then, by letting the diameter of the 
molecules go to zero, the weak convergence of solutions of the Enskog equation 
to solutions of the Boltzmann equation is proved. 
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1. I N T R O D U C T I O N  

The theory of existence of solutions of the initial value problem for the 
Boltzmann equation recently underwent an important change when 
DiPerna and Lions (1) provided their ingenious proof of existence. Before, a 
general existence theorem was available only in the Loeb L 1 frame of non- 
standard analysis (2) (actually, the Loeb L 1 solutions are equivalent to 
standard Young measure solutions). The situation was slightly better for 
the Enskog equation, especially in the case of data depending on one or 
two space variables/3'4) After the DiPerna and Lions result, the situation 
appears to be reversed. In order to reestablish a sort of equilibrium, one 
should now prove an existence theorem for the Enskog equation with 
general L '  data. Recently some progress has been achieved in this direc- 
tion: well-posedness and regularity for small data globally (5) as well as for 
large data globally (6~ was obtained in R 3. Arkeryd's proof (6) requires, the 
initial data to possess finite moments of any order r in the velocity variable, 
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but also delivers uniqueness. In a previous paper, (7) an existence theorem 
was proved under less stringent requirements on the initial data fo but with 
the (unphysical) assumption, first introduced in ref. 4, that the collision 
kernel is symmetrized; in other words, the integral over the direction of the 
line joining the centers of two colliding particles is extended to the entire 
unit sphere rather than to a hemisphere. The proof utilized the same basic 
ingredients as ref. 1, but the detailed analysis of the collision operator was 
substituted by the use of an (equivalent) iterated integral form of the equa- 
tion, giving a considerably shorter proof. The domain was assumed to be 
a box. At about the same time, Polewczak (8) sketched a proof for the 
unsymmetrized Enskog equation in R3; he introduced, however, an 
assumption on the high-density factor ~c in the Enskog equation, which 
essentially amounts to having a collision term dominated by a linear 
operator. In this paper we show how to remove the restrictions of refs. 7 
and 8 and prove a global existence theorem in L 1 for the Enskog equation 
in a periodic box for the unsymmetrized case with a constant ~c. The proof 
goes through for initial values fo with (1 + v2+ ]log fol)fo  in L~+ and can 
be easily extended to the case of R 3 (with the additional assumption that 
x2fo eL1). 

The second result of the paper concerns the question of the asymptotic 
equivalence of the Enskog and Boltzmann equations when the diameter 
of the particles tends to zero. This matter was previously investigated in the 
case of smooth data with small norm (9) for various forms of the Enskog 
equation and for the case of general data with finite mass, energy, and 
entropy and a symmetrized collision term. (7) Here the latter restriction is 
removed. 

2. BASIC E Q U A T I O N S  A N D  E N T R O P Y  I N E Q U A L I T Y  

We consider the Enskog equation (EE) 

(~?, + w?x) f = Q( f )  (2.1) 

with the collision operator 

Q(f)=f~ ( f ' f ' _ t ~ _ - f f + ~ c + ) B ( v , v , , u ) d v ,  du (2.2) 
+ x l t  3 

where u varies on the hemisphere 5 C (u: ]ul = 1, ( v -  v , ) .  u/> 0) and (apart 
from a constant factor that will be set equal to unity without loss of 
generality) 

B(v, v,,  u )=  ~2 max( (v -  v, ,  u), 0) (2.3) 
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The arguments o f f ' ,  f ' _ ,  f ,  and f +  are (x, v'), ( x -  au, v',), (x, v), and 
(x + o-u, v,), where 

v'  = v - u ( v  - v , ,  u) ,  v ,  = v ,  + u ( v  - v , ,  u )  (2.4) 

The high-density factors ~c_+ will be here taken to be equal and con- 
stant. Extending the proofs to bounded, differentiable, symmetric t<'s seems 
much more difficult here than in the previous paper. (7) 

Equation (2.1) will be considered in a periodic box A, which, after 
rescaling, can be taken to be R3/Z 3, with initial data fo = f ( 0 )  such that 

fo(1 +vZ+logfo)eLl+(A XI~ 3) (2.5) 

The extension to R 3 only requires adding the assumption xZfo e L I. 
The key point of the proof will be the use of a modified form of the 

H-theorem valid for the Enskog gas; the first example of a theorem of this 
kind appears, to the best of our knowledge, in a paper by R&ibois. (1~ In 
fact, we shall introduce a modified H-functional, inspired by R&ibois' 
paper(l~ this functional has been repeatedly used by one of the authors 
(C. C.) in private conversations in the last few years and a variant of it was 
used in the discussion of the validity of the Boltzmann equation for soft 
spheres. (12) The functional turns out to be the same as a functional used by 
Polewczak in his paper (8) (in the particular case of a constant ~). It is, 
however, the further rearrangement explained below that makes this func- 
tional useful in the existence proof. 

Let us start now from the collision operator 

Q(f )  = cr2~c ;~ ( f ' f ' - f f + ) ( v - v , ) . u d v ,  du (2.6) 
+ x R  3 

and the definitions of particle density and flow 

p=f  f dv; j = f  vf dv (2.7) 

Using the elementary inequality g(log g - log h)/> g - h, we obtain, for a 
sufficiently regular f,  

fR3xA Q(f) log f dv dx 

' L 5 ~ K  ( i f _  - f f  + ) (v  - v , )  . u du  dv  , dv  d x  
+xR3xR3xA 
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1 L 
- -  ~bC0 "2 xR3xR3xA 

f f  _ ( v -  v , )  .u du dv,  dv dx 

1 L = -~/s 2 ( j p _ - j _ p ) . u d u d x  
xA 

1 2 f  = ~ / s  ( j + p - j _ p ) . u d u d x  
5P xA 

=/s  x A pj + . u du dx 

= /s 2 f~ p div j dy dx 
a •  

~--- --/s x A - ~  p dy  d x  

1 . f  
- -  - -  - -  / s  [3D dy dx (2.8) 

2 dt ~o• 

Here ~ is the ball Ix - Yl -G< a and a caret denotes that  the argument  is y 
rather  than x. 

Hence 

H=Hs+-~lca 2 x A P p d y d x  
a 

if H e is the usual H functional,  is a decreasing quantity.  The addit ional  
term is not  larger than �89163 2 ]lfll 2, and nonnegative,  hence a priori 
bounded  from above and below. This implies that  HB is a priori bounded  
in terms of the initial data  at any time, if f is regular enough and Eq. (2.1) 
holds. 

We further remark  that  

dH ~c i~ ~ f f "  l B d u d v ,  dvdx<-GO (2.9) 
dt 2 + •215215 

where 

1 - - X  
l(x) = log(x)  + ~> 0 (2.10) 

X 

Please note  that  l(x) is decreasing for x < 1 and increasing for x > 1. 
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3. A P P R O X I M A T I N G  SOLUTIONS A N D  EQUIVALENT 
SOLUTION CONCEPTS 

In order to construct the desired solutions of Eq. (2.1) a well-adapted 
approximation scheme is needed which retains the essential structure of the 
H-theorem for the EE discussed in Section 2. 

Let )~ be a decreasing Ca-function on R with 

x( r )=  1 for r ~< 1, x ( r ) = 0  for r >/2 (3.1) 

and set 

Zn(V, V , )  = Z ( ( U  2 "]- / ) 2 ) / / 7 2 )  (3.2) 

(.  
v/ 

x t ) = |  ~cZ.(v, ) f f ' _  [~cZ.(v, Q (f ) (  , v, { v.  - v,) + e] f f  + } d ,9~ • R 3 

x B(v, v,, u) dr, du (3.3) 

(8, + vSx) f = Q"(f) (3.4) 

with an initial value fo satisfying (2.5). We remark that f depends on n and 
we should accordingly write fn  rather than J~ we avoid, however, this com- 
plication in the notation. Now, set 

M = A x R 3 x R 3 x S ~ + ,  d#=dxdvdv, du (3.5) 

f#(x,  v, t)= f(x  + vt, v, t) (3.6) 

If we assume that the solution f is nonnegative, then formal integration of 
Eq. (3.4) gives 

fA • f(t)dxdv=fA • fodxdv-~ ff+Bdsd# (3.7) 

• v~f(t) dx dv = f~ fA R 3 x R 3 
v2fodxdv-2 fOfM(V2 +v2) ff+Bdsd# 

(3.8) 

f A• log f(t) dx dv= f A• log fo dx dv + fo f A• 3 8sf#(s) ds dx dv 

+ fl f A• [Ssf# (s) ] log f #  (s) ds dx dv (3.9) 
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Here by Eq. (3.7), we have 

fo f A • R 3 C~sfC*(s) ds dx dv 

= f ( t )  dx dv - fo dx dv = - e  ff+ B ds dl~ <<. 0 
x R 3 x 113 

and so 

(3.1o) 

But 

f A• log f( t)  dx dv <~ f A • 3f~ logfo dx dv 

+ fO' fA• [Q"(f)]# (s)logf#(s)dsdxdv 
(3.11) 

fOfA [Qn(f ) ]  ~ ( s ) l o g f # ( s ) d s d x d v  • R 3 

~ [ff+ log (ff+)] # (s) B ds d# 

+-~ ( f f  - f f  + )# (s) B ds d# 

+ 2 f ] f M ( 1 - Z ~ ) ( f f + ) #  ( s )Bdsd#  

- 11+12+13 

Now Eq. (3.8) and the elementary inequality 

- y  log y ~< 0Y + exp( - ~ - 1 ) if y, 0 > 0  

imply that 

e fOfM 2 --V - v , - 1 ) ] B d s d p  11<. ~ [ f f + ( v 2 + v , ) + e x p (  2 2 

(3.12) 

f o v 2 d x d v + ~  3[ ( Iv l+ l )exp( -vZ)]dv  (3.13) 
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Moreover, I2 can be bounded as in (2.8): 

Ka2 fo dx dv 
I 2  ~ - " 2  - x R  3 

(3.14) 

and an estimate for 13 follows from Eq. (3.7): 

<~-- fo dx dv (3.15) 13 2e x R 3 

Finally, Eqs. (3.11) (3.15) imply the following entropy estimate: 

f AxR3f(t log f ( t )  dx dv 

~<fAxR3f 0 1Ogfo+V2+~e dxdv 

+ T  • f~ + 3e (JR3 [([vl+l)exp(-v2)]dv 

(3.16) 

to be used later. 
In this paper we shall use various forms of solution: the renormalized, 

mild, and exponential multiplier forms as defined in, e.g., ref. 1, together 
with the following iterated integral form introduced in ref. 4: 

De f in i t i on .  fsatisfies the EE in iterated integral form if 

Q+-(f)#(x,v,.)eL~oc(R+) fora.a.  (x,v)~AxR 3 (3.17) 

and 

r. 

JA xR3 f#(t) t~(t) dx dv 

L = foO(O)dxdv+ f#(S) Ostpdxdvds 
x R 3 x R 3 

+ f A• t;~ ~(s) Q(f)~ (s) dsl x dv, t>O,  O~CL (3.18) 

Here CL is the linear space of all functions ~ in CI(R+;L~(A x R3)) with 
bounded support and with ~(x,v,.)eCl(R+) for a.a. (x,v)~AxR 3. 
The last integral is an iterated integral. It is not required that 
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[q/Q(f) # l e  LI(A x R 3 X (0, t)), only that ~ O(s) Q(f)  # (s) ds ~ L~(A x R3). 

Finally, 

Q+(f)  = ~ f ' f '  ~cB(v, v,, u)dr,  du (3.19) ~ ze + •  3 

Q (f)  = ~ ff+ ~cB(v, v,, u) dr, du (3.20) J~ + x R  3 

kernma 1. The above four solution forms are equivalent for the 
EE if 

Q+(f)  f• f + B d v ,  duEL~oc(AxR3• (3.21) 
l + f '  +• 

The proof of the lemma was given in ref. 7 for the symmetrized case, but 
goes through unmodified in the unsymmetrized case. | 

4. A P R E L I M I N A R Y  STUDY OF EQUATION (3.4)  

The aim of this section is to study the well-posedness of the initial 
value problem for Eq. (3.4) in A x R 3 by means of estimates of the type 
introduced in ref. 6. We start with some local results. 

Lemma 2. Suppose fo~ LI+( A x R3), fo(x, v) = 0 for Ivl > 2n. Then 
there is a unique solution of Eq. (3.4) with initial value fo and 
supo~ ,<~T , f# (x , v , t )~L l (AxR  3) for T' small enough. This solution 
satisfies Eqs. (3.7) and (3.8). 

ProoL Set o f =  0, and define inductively for j ~ N  

Lj f ( t )  = + ~ru + vs, v,,  s)(e + ~cZ, ) B(v, v,,  u) dr, du 

j+l  f ( t)  = fo exp [ - Ljf(t)] 

+ exp[--Lj f ( t )+L~f(s)]  +• 

It follows that for j ~ N 

(4.1) 

~c(jf'jf'_ )# gnB ds dr, du 

(4.2) 

jf>~O, y f (x ,v , t )=O for lvl~>2n (4.3) 
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and similarly to Section 3 

j+ , f # ( t ) = f o  + { ~:Z.(v, v . ) y ' j f ' _  
+ x R  3 

- [~cZ~(v, v . ) + ~ ]  j+~f j f+}  B ( v , v . , u )  d sdv .  du (4.4) 

Set 

f i  e (x,v, t) = fio(x, v), f~ = f - f i ,  f~o = fo - rio (4.5) 

where 

fio(X, v)= X(fo(X, v)/m) fo(x, v) 

Choose co > n so large that 

Ilfe~ = f A • f~~ dx dv <128-  t 

and set 

(4.6) 

(4.7) 

= f a  sup [ f # ( x , v , t ) t d x d v  (4.8) [Ifl[ r' • o~ ,~r '  

If we split j f  as = f , - + j f e ,  straightforward estimates of each 
separately in Eq. (4.4) give 

It j+  ,fell T' ~ life011 + 35e( 2ngaeT', f~o) Itfeoll 

term 

+ [l~f~ll r' [11 ;f~[t r' + 2 11 j+ ~f~l[ r' + 45e( 2mza2T', f,o) ] 

+ 26e( 2nr~oeT', f/0) lit+ lf~[I r' (4.9) 

(u, s) --, y = x + s ( v - v , ) + _ o u  

where M(6) is the set of all measurable subsets M c  A x R 3 such that for 
a.e. v e R 3, the set M~ of those x for which (x, v) ~ M has measure less than 
6. The details of estimates of the above type can be found in ref. 6. We 
remark that the use of the norm (4.8) is based on the fact that for fixed x, v, 
and v, the Jacobian of the transformation 

Here 

(4.10) 
r 

6e(&, f )  = sup J If(x, v)l dx dv 
M(6) M 
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is  -~-[-O'2(U, D--V.)] -1. This was noticed by Cercignani (5) and used by 
Arkeryd. (6) In the case of a bounded domain A this transformation is not 
one-to-one, in general; if, however, we restrict ourselves to sufficiently small 
values of T' as assumed, the transformation is actually one-to-one, because 
if 4 n T ' <  1, then [ v - v . [  T ' < I .  

We now choose T' so that 2 n T ' < l ,  5P(2mza2T ' ,~)<16  -~, 
3 J (2n~rZT ', N ~) I1~11 < 128 -1 , with ~(x ,  v)=2co for xeA,  Iv] ~<2n, and 
N'(x, v )=  0 otherwise. It follows that I]jf~l[ T' < 16-~ for j e N. Moreover, 
for the same value of T', 

I I j + x L -  m+~Ltl~' 

~< 450( 2n~rzT', fio) Iljfe -- rnfell T' 

+ 25~ 2n~a2T', fi0) IIj+ ~f~ - ~+ 1LII ~, + (IIjLII T, + IImLII ~, 

+ 2  I I m + , L I l ~ ' ) I I J e - - m L I l ~ ' +  2 Iljfell ~' I I j+~L--  m+~LIl~' 

<~ �88 II~+~fe--m+~fell~'+ �89 Iljf~--,~LIl~'  (4.11) 

Hence (jfe)jeN is Cauchy in the II "ll v,-norm. Denote the limit by f~.  
It follows that Eq. (3.4) has a unique nonnegative solutionf"=fi+f~ on 
[0, T ' ]  with [If"liT' < oc. Each of the time-integrated gain and loss terms 
belongs to L~+, and so the changes of variables leading to (3.7) and (3.8) 
hold in a strict sense; thus, f ,  satisfies Eqs. (3.7) and (3.8). | 

Lernma 3. Let f be the solution of Lemma 2 with initial value fo. 
If Ufo~LI(AxR3), ]c~[~<k, then c~feLl(AxR3), ]c~[~<k, t<T',  and 
Ila~/ll ~. < oo. 

Proof. (i) 0~= (~Xl '  ~x2' or #x3. Consider the equation 

g # ( t ) = U f o +  {~cZn(V, v.)(g'f' + f ' g ' ) #  (s) 
+ x R  3 

- [KX~(v, v . )  +~] (g f+  + f g + ) #  } B(v, v,, u) dsdv. du (4.12) 

Contraction mapping estimates of the type in Lemma 2 prove the existence 
of a unique solution of Eq. (4.12) on [0, T'] with Ilglt T' < ~ .  The fact that 
g =  0 for Ivl >~2n follows from estimates of the type used in Lemma 2, in 
particular the estimate (4.3), which follows from the exponential form (4.2). 
The difference quotient A~f/Ax ~ solves a related equation and converges by 
the same type of estimates to g in the [1" II r,-norm, when Ax--. O. Hence 
a~fe Co([0, T ' ] ,  L1). 

(ii) U=c~v,, #v2, or av3. Besides terms as in (i) related to a factor 
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" U f "  in the Q-integral, this case involves terms originating from 
"UB, U)(,B." We have to control 

J - =  l-~c la~(z,n)l ( f f '_)# (s) 
+ •  3 

+(KIO~Znnl+~l~gl)(ff+)~ (a)]dsdv. du (4.13) 

and the corresponding difference quotients. These terms cannot be 
bounded by the estimates of Lemma 2, since the required B factor is now 
absent. Instead we use the control of I~);- l f r o m  i, together with the estimate 
(Sobolev imbedding) 

fs ~r2f(x + au, v , ,  t) dr, du 
x I i  3 

' } § ~ 1~3x,f(x, v,, t)l dr, dx 
i = 1  

( 3 ) 
C [I f l i t ,  § ~ N0x, fllT, (4.14) 

i = 1  

It follows that 

( 3 ) 
fA J-dxdv~CT' H fliT, I[fllT,+ ~ !lax, fliT, (4.15) 

x R  3 i = 1  

Using (4.15) in the relevant places, the proof of (i) can now be repeated to 
prove that ~?~fe Co(J0, T ' ] ,  L1). 

(iii) Higher-order derivatives. The arguments of (i) and (ii) can now 
be repeated to prove the lemma for Jel--2, and then successively in the 
same way for higher-order derivatives. I 

Lemrna 4. L e t f b e  the solution of Lemma 2 with initial valuefo. If 
fo log fo ~LI( A x R3), then f(t) satisfies Eq. (3.16) for t ~< T'. 

ProoL If f0 is smooth enough, then it follows from Lemma 3 that the 
solution f is smooth enough on [0, T ' ]  x A x R 3 for the formal computa- 
tions of (3.11)-(3.15) to hold in a strict sense, thus implying Eq. (3.16). 

Consider next an arbitrary fo of the type considered in the present 
lemma. Introduce a sequence of smooth initial values fo v ~ f o  in L~+ when 
v ~ o% and with for = 0 for Ivl ~> 2n. By the proof of Lemma 2 the corre- 

822/59/3-4-21 
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sponding solutions f~ are for v large enough defined in [0, T '] ,  and 
limv~ ~ I l f - fv l l  T ' =  0. In particular, we can take for with 

fA• log f0~ dx dv --, fA • 3f0 log f0 dx dv (4.16) 

Then (3.16) follows f o r f o n  [0, T'] .  | 

The previous lemmas imply global well-posedness for Eq. (3.4) under 
(2.5). 

T h e o r e m  5. Suppose foGZl(A •  3) with fologfoeL~+(A • 
and f0 = 0 for Ivl > 2n. Then there is a unique solution of Eq. (3.4) for t > 0 
with initial value f0. For  t > 0  the solution satisfies Eqs. (3.7), (3.8), and 
(3.16) as well as the entropy estimate 

fAxR3f(t ) log f ( t )  dx dv 

~< ;A xR3 f~176176 

(;A )2 ~,glO.2{; R }2 KO'2 fodx dv + ([vl + 1)exp(--v2)]  dv +-5- 

+ ~  (1 - Z.)(ff+)  # (s)Bdsd~ (4.17) 

Proof. We observe that by Lemma 4 for 0 ~< t ~< T' 

f f(t) dx dv >o9 
~< f l o g  + f dx  dv 

xR 3 

~< ~ A• 3 

~ .I• ~ 

327zn 3"] 
f l o g f  dxdv+--~e j 

fo log fo + v2+ d x d v + - -  
32Ten 3 

3e 

- ~ - T  • R 3f0dxdv +~--e ~ ([vl+l)exp(-v2)dv 

(4.18) 
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Given any time interval [0, T], co can be chosen in such a way that 
the right-hand side of Eq. (4.18) is less than 128 1 for t in [0, T]. The time 
interval [0, T ' ]  of Lemma 2 can be chosen with respect to this co, and the 
solution f will satisfy Eqs. (3.7), (3.8), and (3.16) on [0, T'] .  Lemma 2 can 
next be applied to [ T ' , 2 T ' ]  with initial value f ix ,  v, T') and then 
successively on subintervals of length T' covering [0, T]. 

Moreover, the argument in the proof of Lemma 4 can be applied while 
keeping the term 

2Jo ~r "'IM (1 -- Zn)(ff+) # (S) Bdsdp 

throughout the limits, thus proving Eq. (4.17) on [0, T]. This completes 
the proof of the theorem; in fact the solution is unique and the result holds 
for t > 0 .  | 

Theorem 6. The solution f of Theorem 5 also satisfies 

~o• 2 f f "  Z~Bdsd# 

L K 
<~ J ~ fY_ z.B ds du 

• J+ 

1 fo(log + fo + 2/)2) dx dv + K'~2 fo dx dv 
+ l - ~  •  2 \ ~•  

+ 3 e x p ( - v a - 1 ) d v + - - ~ -  e 3(jvl+l)exp(-v2)dv (4.19) 

Here j > 1, and O is a measurable set in A x 1t 3 X 113 X [0,  T ] .  

Proof. Evidently 

~0 x 5,% K r ~ f ' f  _ z~B ds d# 

x3~ /{ B <~ J L ~ f f  - z~ ds d# 

1 T 
(4.20) 
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By (2.9) and (3.13), in the case of a smooth f0 

-~ f ' f  - \ ~f~---j z ,  B ds d# 

= _ I  TdH 
o as ( s )ds -go  log f f  + B ds dl~ 

d 1s / C R~ dx dr) 2 fA• 2) xdv+-~- t~ • fo 
i 

;. ]' + i (T ) l og - i (T )axd~  3e LJ., ( Iv l+l)exp(-v~)dv 

So )' f A ~Ca2 dx dv <~ • R3 f~176 f~ + 2v2) dx dv +--2 - • 

-"-'rr3e ]' - + L3R3(Iv l+l )exp( -v2)dv  (4.21) 

In the case of smooth data fo, Eq. (4.19) follows from Eqs. (4.20) and 
(4.21). Using the continuous L 1 dependence of the solution on the initial 
data, together with Fatou's lemma, Eq. (4.19) follows for an arbitrary 
f o E L I + ( A x R  3) w i t h f o l o g f o e L l ( A •  3) andfo=O for Ivl >~2n. II 

Remark. From Eq. (3.4) in the equivalent exponential form it 
immediately follows that for a.e. (x, v) ~ A x R 3 

(So ) f ( x , v , T ) e x p  h f f (x ,v , s )  ds > . f# (x , v , t ) ,  O<~t<~T (4.22) 

Here 

h f f ( x , v , t ) = f s  " f ( x + a u + v s ,  v , , s ) ( g + K z ~ ) B ( v , v , , u ) d v ,  du 
+ A N  3 

(4.23) 

5. A N  E X I S T E N C E  T H E O R E M  

Having established the relevant preliminary results, we can now 
proceed to a discussion of the proof of an existence theorem for the EE 
(2.1) by the type of argument given in ref. 7 for the symmetrized Enskog 
equation. The actual proof becomes more technical in the present case due 
to two consecutive approximations with different and more involved 
entropy estimates. 
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Given f0 satisfying Eq. (2.5), we obtain the approximating sequence 
(3.4) with initial value fo,,=Z(Ivl/n)fo. By Theorem 5 the corresponding 
solutions exists and satisfies Eqs. (3.7), (3.8), and (3.16) Applying these 
estimates together with (4.22) and (4.19) to the mild form of (3.4) gives 
that ( f~ )~N is uniformly equicontinuous from [0, T] to L~(AxR3). 
Hence there is a subsequence ( f")  converging weakly in L~(A x R3•  
[0, T])  as well as in LI(A x R 3) for 0~< t~< r to a function f ~  C([0, T], 
LI+(A x R3)). Vavious subsequences of (fn') will also be denoted by (fn') 
in the sequel without any further comment. 

The averaging technique of Golse eta/. (13'14) will be used in the form 
stated in ref. 1: 

l . e m m a  7. (13A43) Let (E, #) be an arbitrary measure space, and let 
~p e L~176 x R 3 x [0, T]; L~(E)). 

(i) If gn and G" belong to a weakly compact set in L~(K) for any 
compact set K in A x R3x (0, T), and (~,+V~x)g"=G ~ in distribution 
sense, n e N, then ~R3 g~O dv belongs to a compact set in LI(A x (0, T) x E) 
for any compact set K in A x R 3 x (0, T), provided that supp ~ ~ Kx  E. 

(ii) If in addition gn belongs to a weakly compact set in 
U(A x R3x [0, T]), n eN,  then ~R~ g"t)dv belongs to a compact set in 
L~(A x [0, T] x E). 

We shall apply this lemma to the renormalized, approximated Enskog 
equation 

(Or + vO~) g~ = Q~(g) (5.1) 

with 

g ~ = 6  ~ log(1 + 6g), Q'~(g)=Q"(g)/(l+g~g) (5.2) 

Equation (5.1) is satisfied in the distribution sense by g = f n  and, in order 
to apply the lemma, f~  and Q~ should satisfy the conditions on gn and G n 
in Lemma7. But f,~, n eN,  belongs to a weakly compact set in 
L I(A x R3x [0, T]) since 0 ~< f~  ~< fn,  and, as discussed above, { f"} ,  ~ N is 
weakly precompact in L 1. Evidently, by (3.16) 

{ f"f~+ z(x, v ) tv-v , t / (1  + 6f')}n~N 

is weakly precompact in LI(M x [0, T])  for any characteristic function Z of 
a measurable set of bounded support in A x R 3. 

It follows that for ~ > 0, { Q~-(fn)}n ~ N is a weakly precompact subset 
of LI(K) for any compact subset K of A x R 3 x [0, T]. This, together with 
(4.19), implies the same weak Lt-precompactness for { Q ~- + (fn) } n ~ N, when 
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8>0.  So we have the relevant compactness properties of (fna}ne N and 
{Q~(ff)},~N for an application of Lemma 7. 

Hence, for any ~9~L~(A xR3 x [0, T]), 8>0 ,  

fR3f~a'~ dr= fRfa~, dv in LI(A x [0, T]) (5.3) lim 

Here fa is the weak Ll-limit of {f~'}. It follows (by means of an argument 
first used in ref. 4 and, more recently, in ref. 1) from (3.16) that 

lim sup ~ ds I f~- f" l  dxdv=O (5.4) 
6 ~ 0 +  n dO x R  3 

and that 
e r e  

lim ( ds l Ifa- fl dx dv=O (5.5) 
b ~ O +  JO JA x R  3 

This together with Eq. (5.3) gives 

lim fR3f% ,Iv = f.3fO dv in LI(A • [0, T]) (5.6) 

Thus, a change of variables x -~ x + au and another application of the 
averaging argument implies the following result. 

Lomma 8. We have 

li m fR3fn'(X H- au, v,, t)B~ dr, 

= Ia3f(x+_au, v,, t) B~ dr, 

in L~oc(AxR3xSP+ x[O,T]) for ~eL~(Mx[O,T])  (5.7) 

Similarly to Lemma 1, the mild solutionff, n e N, of the truncated EE 
also satisfies a renormalized iterated integral form of the equation: 

f3• R3 f;# (t) t~(t) dx dv 

= fA f~a~(O) dx dr+ fo fA 
x R 3 x R 3 

+fAxS3IfOIP(s) Q'~(f)# (s) dsldxdv, 

f~#(s) Os~, dx dv ds 

t>O, t ~ C L  (5.8) 
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Consider the limit of each term in Eq. (5.8) for n'--, oo and then as 
~ 0 + .  Arguing in the same way as we did before to prove (5.6), the first 

three terms of Eq. (5.8) then converge to 

f e ( t )  O(t)dxdv, foO(O) dxdv, f#(s)  c?,r dxdvds 
x R 3 x R 3 x R 3 

Notice that (4.22) and (5.7) imply that 

E;o f# (x ,  v, T) exp he(x, v, z) d~ 

>j f e (x ,  v, t) on O<<.t<~T a.e. in (x ,v)  (5.9) 

Here 

he(x ,v , t )=fs  ~ f (x+au+vs ,  v , , s ) (e+~)B(v ,v , ,u)dv ,  du (5.10) 
+ x R  ~ 

Then a proof of the following existence result for the initial value problem 
of the EE can be reduced to a study of the limit of the collision term in 
Eq. (5.8). 

T h e o r e m  9. Let f0 satisfy (2.5). Then there exists a function 
f e  C((0, oo); LI(A x R3)) satisfying the equation 

(at+Vax)f +~f~ f f+B(v,v, ,u)  dv, du=Q(f)  
+ x R  3 

(5.11) 

(in any of the four forms of Lemma 1) with initial valuefo, such that (3.16) 
holds for t/> 0. For t > 0 mass and energy are bounded by their initial 
values, and the entropy satisfies 

f A • R3 f ( t )  log f ( t )  dx dv 

<~ ;A• fo + V2 ) dx dv 

+--f- fo dx dv + 
x R 3 ~ 3 

(Iv[ + 1 ) e x p ( - v  2) dvl 2 q 

(5.12) 

Finally, (5.9) holds for T >  0. 
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Proof. Starting with the loss term, the loss and gain parts of the 
collision term will be studied separately. For  the loss term, given e > 0, the 
integral S2h#(x, v, r) dz a n d f # ( x ,  v, t) are locally bounded on the comple- 

R 3 ment ,(2 c A x of some set of measure ~< e. Then, for ~ ~ CL with ~ = 0 
outside of f2 x R + : 

limfo 

=l im;odSf (  ff'f% ~# \ l + ~$f"'J t#(~ + ~c) n d# 

-=fdsf(ff+)#tp(e+K)Bdlx, t ~ T  (5.13) 
Actually, it would have been enough to consider ~ ~> 0 in the above limit 
of the loss term of Eq. (5.8). That is also the case for the gain term. 
Accordingly, the proof is complete for 0 ~< t ~< T and ~ with support in 
f2 x R+,  once the following two lemmas are proved for such 0, ~/> /> 0. 

L e m m a  10. The following relation holds: 

lim; o' ds f M \ l +~$f., } ( (--f"f"'- )~e ~lsB;~. dv >l ;o dS fM ( f f ' -  )#1isB dl x , 

I . emma 11.  The following relation holds: 

lim fo' dS f M ( (ff--+f~) # ~B),~ d# <... f~ dS ;M ( f f '  ) # ~B dp, 

t<<, T 

(5.14) 

t<~ T 

(5.15) 

The limit in the lemmas exist, since we have already proved that the 
limits of each of the other terms in Eq. (5.8) are finite. Also, from Lemma 5 
(which will be proved first) it follows that the right-hand side in Lemma 6 
is finite. 

Once the lemmas are proved, and thus f satisfies Eq. (3.18), with e + ~c 
in place of ~c in the loss term, for t ~< T and ~ with support in s x R +, then 
Eq. (3.18) (with e + ~: in place of ~c in the loss term) follows for any ~ ~ CL 
and t ~< T by approximation. 

Indeed, the integral I(x, v) = ~t o ~Q(f, f )#  ds exists for almost all (x, v) 
for any given ~0 ~ CL and any t ~< T, and is measurable in x, v. Let Z + be 
the characteristic function of the set in (x, v) where the integral I(x, v) is 
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>0. Consider first 0+ = Z+O (also in CL) and take an increasing sequence 
of characteristic functions XnX+, such that f #  is bounded on 
supp Zn x [0, t]. For  the test function OZn, (4.2) holds, and 

lira dxdv z~tp+Q(f , f )  # ds 
n ~ o o  x R  3 

= lim dxdvg .  O+Q( f , f )  # ds 
t l ~  •  3 

= d x d v j  O+Q( f , f )  #ds 
x R  3 0 

We proceed analogously for ~ - ~ + .  The bounds on mass and energy 
follow from the corresponding ones for fn given by Theorem 5. The entropy 
bound follows in the limit from (4.17), since 

-~ M(1--Z~)( f f+)# (s) Bdsd#  

_ _  2 ) ( f f  + ) # ( s )  B ds  d #  K (v 2 + v ,  
~< 2n 2 M 

~2K fA x R  3 v2f~ when n ~ o o  (5.16) 

Here (3.8) was used in the last step. Finally, the theorem for all t~R+ 
follows by a Cantor diagonalization argument. 

Proof of  l_omma IO. S e t f ~ = f  n/x R and let B~ be the ball of radius 
2 in R 3. Choose 2 so large that supp ~ ~ A x B~,/2 x R+ and denote by Xx 
the characteristic function of the set 

2 ((V, V , )  ff R 3 X R3; v 2 + v ,  ~< •2) 

Evidently, for n > 2, 

( (s.s._ f~s. \ T-~--~-~ / OB)& d#ds 

( (s.s._ 

{D >1 ds ( ( f ~ f ~ ) ' ) #  ( l + . , f ~ ) - l O B z ~ d p d s + e ' + e  '' (5.17) 
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where 

I~'1 ~< cx, Ro(~), I~"1 ~< C[l(j)] - - 1  

If {Rk}k~N is a sequence tending to infinity, and 

lim f ~  =fRk weakly in L 1 
n '  

then limk_+ co fRk = f  in LI(A • R 3 x (0, T)). Using Lemma 8, choose {n'} 
such that for a.a. (x, v, u, s) e A • R 3 x 50+ x (0, T): 

limf,<f"LO#'Bz~d~,=f, i3f+~,~'Bz~d~, (5.18) 

(where # '  denotes that sv' is added to the x variable). 
Then 

l im 

=f'odSfM((f~f )') # (1 + x/~) - 11//B,~ d// 

fs ds fM ((fRf-)')# OBz~ dp as 6--+0+ (5.19) 

From here Lemma 10 follows if we let 2 --* o% Rk ~ o% and j ~ ~ in this 
order. I 

Proof of Lommo II. With )~x as above, take 2 = 2 ( 6 )  so that 
lim6 ~ 0+ [ 6 2 ( 6 ) ] - 1 =  0. It is enough to take n ~> 2 and consider 

i.=fofMkl+6f. ((--f~f")-'~ # zxOBz, d# ds (5.20) 

since 

dsfM 7+Yf;) (1-Z;)OBz"ds~<'/-(-fi+77{~f v~f~ (5.21) 

For  2 fixed, outside some set in A x 1 3 •  Y+ X [0, T] of arbitrarily 
small measure t />0 ,  for some subsequence {n'}, Eq. (5.18) holds with 
uniform convergence and bounded limit. Thus, 

C limi~ (ffz)~ OBz~(~,d.+l--(~+Cj.~o(e) (5.22) 

The lemma follows if we take q + 0 + ,  6 --* 0 + ,  and j + ov in this order. II 
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Theorem 12. Let f0 satisfy (2.5). Then there exists a function 
f e  C([0, ~) ,  L~(A xR3)), satisfying the EE (2.1) (in any, of the four 
equivalent forms of Lemma 1) with initial value fo. For t > 0 mass and 
energy are bounded by their initial values and the entropy satisfies 

IA f(t) log f(t) dx dv 
x R  3 

< xR~f~176176 2 \oA•176 (5.23) 

Finally, (5.9) (with e = 0) holds for T> 0. 

ProoL Start from a sequence of solutions f~,. of Eq. (5.11 ) with G-* 0 
when v-* oo, all with initial value f~v(0)=fo. The limiting behavior of 
Eq. (4.19) will be needed. But essentially by Lemma 8 this limit gives 

x ~ +  /r ' ' B So g f J~ ds du 

<. j g Lv.s - B ds d~, 
x ,9~ 

~crz2 fo dx dv + l-~)l .,3 f~176 f~ + 2v2) dx dv +--2 - • 

~R ~vt~ [ f,, 12} + 3exp(-va-1)dv+--~e 3([vl+l)exp(-v2)dv 

(5,24) 

Using (5.24) instead of (4.19), together with Theorem 9 for the other 
properties off~,  the proof of Theorem 12 almost line by line follows the 
proof of Theorem 9 and is left to the reader. | 

6. C O N V E R G E N C E  TO A SOLUTION OF THE 
B O L T Z M A N N  EQUATION 

The type of argument used in the previous section implies that the 
solutions of the EE provided by Theorem 12 converge to solutions of the 
BE when the diameter a tends to zero and we assume that, with a suitable 
rescaling, a2~:~ remains constant in the process. We follow again the line of 
argument of ref. 7. 

Theorem 13. For any sequence {aj}j~Nofrealswithlims~o a j=0 ,  
and any corresponding sequence of solutions {f~j}j~N of Theorem 12, 
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there is a subsequence {aj,} for which {f~:,} converges weakly in L 1 to a 
solution f of the BE for elastic spheres. 

For the necessary changes in the proof of Theorem 12 to obtain this 
result, the following lemma is required. 

k e m m a  14. Assume that g" tends to g weakly in L~(A x R 3 x  

(0, T)), l i m a , = 0 + ,  and that for all 0 e L ~ ( M x ( 0 ,  T)) with bounded 
support 

l i m f ~  3 g 'Odv*=f  R3 gtpdv, in LI(A • x(0, T)) (6.1) 

Then, strongly in LI(A x R 3 x 5t~+ x (0, T)), 

l i rn  fR3 g"(x +_a.u, v,, s) 6(x, v, v., u, s) dr. 

= fR3 g(x, v,, s) ~9(x, v, v,, u, s) dr, (6.2) 

Proof. The lemma follows if 

lim. fR~ g"(x, V,, S)t~(X +_ ~.U, V, V,, u, s)dr,  

= fR 3 g(x, V,, S) ~p(X, V, V,, U, S) dr, (6.3) 

But this holds for continuous ip, hence by approximation for those 
indicated in the statement of the lemma. | 

n Recall that foj = limn ~ ~ foj for some sequence of truncated solutions 
n {f~j }n ~ N with a truncation tending to infinity with n, and let f b e  the weak 

L 1 limit of a subsequence of {f~j}j~N. It follows that there is a sequence 
nj, of diameters {aj, } and a corresponding sequence of functions {f~j.}, with 

the latter converging weakly in L 1 to f Denote the latter sequence by 
{fJ}j~N and the subsequence of radii by {aj}j~N. Notice that the 
inequality relating the gain and loss terms, Eq. (5.24), holds f o r f  j, j e N .  

Lemma 14 now implies the following variant of Lemma 8. 

I .emma 8'. There is a subsequence {j'} of N such that 

lim~ f/(x+_aj, u,v,,  t )BOdv,  
j '  dR3  

=f~3 

in 

f(x,  v,, t) B~ dr, 

L?oc(A • R 3 • ~+ • (0, r)) for ~ L ~ ( M x ( 0 ,  T)) (6.4) 
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Proof ofThoorem 74. The proof follows the argument used for 
Theorem 12 with obvious replacement of Lemma 8 by Lemma 8' and a few 
references to Lemma 14. | 
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